\Name:______

Date:_____

Math Club Logarithmic Functions Worksheet #2

1. Simplify each of the following to a single logarithmic expression:

$\log a + \log b + 2\log c$	$3\log\frac{1}{a} + 2\log a$	$5\log b + \log b^3 - 2\log b$
$3\log_4 a + \log_2 a$	$(\log_a b) (\log_b \sqrt{a})$	$\log_c x^{\log_x \sqrt{c}}$
$a^{\log_a b + \log_a \sqrt{b}}$	$\frac{\log x^7 + \log x^4}{\log x^{12} - \log x^2}$	$\log a - 5\log b + \frac{1}{3}\log c$
$\log_b x^{\log_x a}$	$x^{\log_x 20 - \log_x 4}$	$\frac{\log x^3 + \log x^5}{\log x^6 - \log x^3}$
$\log(1-x^3) - \log(1+x+x^2) - \log(1-x)$	$\frac{1}{\log_a x} + \frac{1}{\log_b x}$	$z^{-3\log_z 5}$

2. Evaluate each of the following (Without a calculator!):

$\log_{10} 10$	$(\log_{10} 1000) \times (\log_{10} 100^2)$	$\log_3 243 + \log_9 729$
$\log_2 \sqrt[3]{16} + \log_4 8$	$(\log_6 216)(\log_{64} 16)$	$\log_6 8 + \log_6 27$
$6\log_2(1.5) - 3\log_2(18)$	$(\log_a b)(\log_b c)(\log_c a)$	$\log_4 20 - \log_4 5 + \log_4 8$
$\log_2\sqrt{5} - \log_2\sqrt{40}$	$\log_4 \sqrt{32} + \log_2 \sqrt[3]{0.5} - \log_2 \frac{1}{8}$	$5^{2\log_{25}16}$

3. Solve for "x" for each of the following:

$\log_3(\log_8 2) = 2$	$\log_5\left(\log_3\left(\log_2\left(x-3\right)^2\right)\right) = 0$	$(\log_{10} z)(\log_z y)(\log_y x) = \log_5 25$
$\log_3\left[\log_x\left[\log_2 8\right]\right] = -1$	$2^{x-1} = 3^{x-1}$	$(\log_{64} x)(\log_{5} 16) = 2$

4. Solve for "y" $(\log_3 x)(\log_x 2x)(\log_{2x} y) = \log_x x^2$

5. If
$$\log x^5 y^3 = 25$$
 and $\log \frac{x}{y} = 3$, then what is the value of $\log x$?

6. Prove the following identity:
$$\frac{1}{\log_a b} + \frac{1}{\log_c b} = \frac{1}{\log_{ac} b}$$

7. Find the value of
$$\sum_{n=1}^{999} \log \sqrt[3]{\frac{n^2}{n^2 + 2n + 1}}$$

8. Simplify the product completely:
$$\frac{\log_2 3}{\log_4 3} \times \frac{\log_4 5}{\log_6 5} \times \frac{\log_6 7}{\log_8 7} \times \dots \times \frac{\log_{124} 125}{\log_{126} 125} \times \frac{\log_{126} 127}{\log_{128} 127}$$

9. If
$$\log(xy^3) = 1$$
 and $\log(x^2y) = 1$. What is $\log(xy)$? Amc 2003 12A

10. If $a \ge b > 1$, what is the largest possible value of $\log_a \left(\frac{a}{b}\right) + \log_b \left(\frac{b}{a}\right)$? AMC 2003 12B

11. How many distinct four-tuples (a, b, c, d) of rational numbers are there with: $a \log_{10} 2 + b \log_{10} 3 + c \log_{10} 5 + d \log_{10} 7 = 2005$ Amc 2005 12B

12. The numbers $\log(a^3b^7)$, $\log(a^5b^{12})$, and $\log(a^8b^{15})$ are the first three terms of an arithmetic sequence, and the 12th term of the sequence is $\log(b^n)$. What is the value of "n"? AMC 2008 12A

13. It is given that $\log_6 a + \log_6 b + \log_6 c = 6$, where "a", "b", and "c" are positive integers that form an increasing geometric sequence and b-a is the square of an integer. Find the value of a+b+c? AIME2002

14. Challenge: Let $N = \sum_{k=2}^{1000} k \left(\left\lceil \log_{\sqrt{2}} k \right\rceil - \left\lfloor \log_{\sqrt{2}} k \right\rfloor \right)$ (Here $\lfloor x \rfloor$ is the greatest integer that is less than or equal to "x" , and $\lceil x \rceil$ is the least integer that is greater than or equal to "x"). Find the remainder when "N" is divided by 1000.

15. For all positive integers "n", let $f(n) = \log_{2002} n^2$. Let N = f(11) + f(13) + f(14). Which of the following relations is true? AMC 12 2002

A) N > 1 B) N = 1 C) 1 < N < 2 D) N = 2 E) N > 2

1. For all integers "n" greater than 1, define $a_n = \frac{1}{\log_n 2002}$. Let $b = a_1 + a_2 + a_3 + a_4$ and

 $c = a_{\rm 10} + a_{\rm 11} + a_{\rm 12} + a_{\rm 13} + a_{\rm 14}$. Then what is the value of b-c ? AMC 12B 2002